Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Asunto principal
Tipo del documento
Intervalo de año
1.
Bull Math Biol ; 85(6): 54, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2318476

RESUMEN

Metapopulation models have been a popular tool for the study of epidemic spread over a network of highly populated nodes (cities, provinces, countries) and have been extensively used in the context of the ongoing COVID-19 pandemic. In the present work, we revisit such a model, bearing a particular case example in mind, namely that of the region of Andalusia in Spain during the period of the summer-fall of 2020 (i.e., between the first and second pandemic waves). Our aim is to consider the possibility of incorporation of mobility across the province nodes focusing on mobile-phone time-dependent data, but also discussing the comparison for our case example with a gravity model, as well as with the dynamics in the absence of mobility. Our main finding is that mobility is key toward a quantitative understanding of the emergence of the second wave of the pandemic and that the most accurate way to capture it involves dynamic (rather than static) inclusion of time-dependent mobility matrices based on cell-phone data. Alternatives bearing no mobility are unable to capture the trends revealed by the data in the context of the metapopulation model considered herein.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Pandemias , Modelos Biológicos , Conceptos Matemáticos , Tiempo
2.
R Soc Open Sci ; 9(12): 220329, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2191264

RESUMEN

It is widely accepted that the number of reported cases during the first stages of the COVID-19 pandemic severely underestimates the number of actual cases. We leverage delay embedding theorems of Whitney and Takens and use Gaussian process regression to estimate the number of cases during the first 2020 wave based on the second wave of the epidemic in several European countries, South Korea and Brazil. We assume that the second wave was more accurately monitored, even though we acknowledge that behavioural changes occurred during the pandemic and region- (or country-) specific monitoring protocols evolved. We then construct a manifold diffeomorphic to that of the implied original dynamical system, using fatalities or hospitalizations only. Finally, we restrict the diffeomorphism to the reported cases coordinate of the dynamical system. Our main finding is that in the European countries studied, the actual cases are under-reported by as much as 50%. On the other hand, in South Korea-which had a proactive mitigation approach-a far smaller discrepancy between the actual and reported cases is predicted, with an approximately 18% predicted underestimation. We believe that our backcasting framework is applicable to other epidemic outbreaks where (due to limited or poor quality data) there is uncertainty around the actual cases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA